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Optimum Coherent Linear Demodulation

WILLIAM C. LINDSEY, MEMBER, IEEE

Abstract—Presented is the performance analysis for four types
of linear-modulated communication systems where the message to
be transmitted comes from one of two classes of stochastic proc-
esses, and the additive channel noise is white and Gaussian. The
two classes of stochastic processes which are used to modulate the
transmitter are taken to be the ‘‘maximally flat’’ and ‘‘asymp-
totically Gaussian’’ processes. Demodulation is accomplished at
the receiver by coherent frequency translation using a noisy replica
of the carrier and filtering the result with one of two types of Wiener
filters. These are commonly referred to as the zero-lag (realizable)
and infinite-lag (nonrealizable) Wiener filters.

The four types of modulation considered are: linear-modulation,
double-sideband (DSB); linear-modulation, double-sideband,
suppressed carrier (DSB/SC); linear-modulation, single-sideband
(SSB); and linear-modulation, single-sideband, suppressed carrier
(SSB/SC).

INTRODUCTION

PROBLEM of current interest in the area of space
communications is that of utilizing one of the neigh-
boring planets as a parasitic antenna for reflecting an
analog signal between two widely separated (or the same)
points on the earth and then detecting the transmitted
signal. The question that immediately comes to mind to

The results obtained, however, may be applied to a wide
class of problems which requires the transmission of analog
information to a distant point, e.g., the transmission of
analog data from a vehicle in orbit about the moon.

The communication links under consideration are de-
picted in Figs. 1 and 2. At the transmitter (XM TR) the
kth random process of the sth message class {m;(f)},
i=1,2;k=1,2,..., «)is used to modulate the trans-
mitter. The output waveform, say £.(t), is transmitted
into the channel where additive white Gaussian noise of
single-sided spectral density Ny W/(c/s) corrupts the trans-
mitted waveform resulting in the received waveform
Vi) = &) + »(¢). The detection procedure is carried
out as follows: The observed data y,,(f) are multiplied by
a noisy copy, say r(t), of the transmitted carrier, and the
resulting waveform #,,(f) is filtered (after an appropriate
transformation in the SSB systems) by one of two types of
Wiener filters, i.e., the appropriate linear filter that mini-
mizes the mean-square error, [1]. A filter of type I works
as follows. The input funetion #;,(f) [or ()] is recorded
for a certain interval of time (theoretically for — o <{< o)

tbe system demgn engineer is that'of selecting the modula- | e |60 TN 2y 2 wener | )
tion-demodulation technique which allows for the most * FILTER *
unambiguous detection procedure at the receiver. In this
paper we consider the following four types of linear
modulation-demodulation techniques and compare each vin
technique based on two classes of modulating spectra. Fig. 1. Communication link—DSB.
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Fig. 2. Communication link—SS8B.

Type I: linear-modulated, double-sideband (DSB).

Type 11: linear-modulated, double-sideband, suppressed
carrier (DSB/SC).

Type III: linear-modulated, single-sideband (SSB).

Type IV: linear-modulated, single-sideband, suppressed
carrier (SSB/SC).
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and is then processed. For type II filtering we assume that
the filter is physically realizable and may be constructed
by a ecircuit containing resistances, inductances, and
capacitances. In certain applications, e.g., reflection of
the analog signal from a neighboring planet, where delay
in the demodulation procedure is of no importance, type I
filtering may be practical.

The advantages of type II filters are the simplicity with
which they may be implemented and the rapidity with
which the output data are delivered. The advantage of type
I filters is the more complete use they make of the input
signal; ronsequently, the additive noise may be suppressed
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more effectively. A comparison of both types of filtering
action will be given (for two classes of message spectra) on
the basis of a “signal-to-noise ratio” related to the Wiener
error vs. a ‘‘signal-to-noise ratio” determined by initial
design parameters.

THE SIGNALING PROCESSES

At the transmitter we presume we have available two
classes of stationary time series with spectral densities
denoted by Si(w; k)and Se(w; k), (k= 1,2..., »). Class
one is taken to be of the “maximally flat” form, i.e.,

CE® L,

bl(w;k = i+ (w/a)gk; v = g Hy ey

()
where K;(k) is a constant that is chosen so that the time
series, which it represents, has unit variance, i.c.,

1 ©
- f S1<w; ]n) do = 1.
2r J .

Yor the class of “maximally flat”” spectra N(k) is given by
Ki(k) = (z/a) sine (x/2k) (2)

and we have adopted the notation that sine x = sin x/x.
This process is both physically reasonable, mathematically
convenient, and the integer k& is a measurc of the rate of
spectrum cutoff, e.g., k = 1 corresponds {0 a dropofl of
6 dB per octave, k = 2 corresponds to 12 dB per octave,
ete. Further, a/27 may be considered to be the half-power
frequency of the time series m(¢). If £ = 1, Si(w; 1) is the
spectral density oceurring at the output of an RC circuit

whose input is white Gaussian noise. For & = o, we have
w/a; Hw“ <a
Siw; =
Sile; =) {0; el > a

which is the impulse power responsc of an ideal low-pass
filter of bandwidth a/2r ¢/s.

Class two processes are taken to be the stationary
‘“asymptotically Gaussian”’ processes with a speetral
density given by
Ko(k)

Selw; k) = ﬁ*_i_*(w/avfc):,]k;

k=1,2..., 0 (3

and K,(k) is adjusted such that

1 ©
- f Se(w; k) dw = 1.
2r J_w

Direct substitution of (3) into this expression yields the
value

Kao(k) = - i

aVEBG, k— 1) 4)

where B(u, ») is the well-known beta function. If k = 1,
Si(w; 1) = Sy(w; 1), while as k approaches infinity in (3)
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we have

Sulw; k) = K2(k)[1 + <aL\/%)2]—k

(w/a)? (w/a)
koo 2k

w/a)t _

= Ky(k) exp[—k< YR

()

or

. , 2Vir | <w>2:|
li Sa(w: k) = - expl —\ -
Lﬂl.lw 2lw; b) a (\p|_ a

which is the Gaussian speetrum. This unit variance process
is rather inferesting from the physical standpoint in that
it may be generaled by passing white Gaussian noise
through & isolated caseaded RC networks. Note that the
two random processes possess radically different frequency
components as & becomes large. 'or £ =« the parameter
a/27 may be considered to be that frequency at which
the speetrum has decayed (o e times the value at o = 0.
These two classes of random processes are sufficiently
general in that they include a broad class of signaling
spectra cncountered in communication engineering.

THE TRANSMITTED SIGNALS

A represeniation of these signals which is most con-
venient for our purposes is to represent the transmitted
waveforms as the product of a real low-pass waveform,
which depends on the modulating signal m,(f) and a
complex cisoidal carrier. For type I modulation, i.e., DSB,
the transmitted signal may be written as

;= ]7‘)

Ea(t) = V2P + mgng () ] exp (Jud) ;b= 1,2, ..., ®

Y=y
(6)
where w, is a suitably defined carrier frequency and 100 m,
is a measure of the per cent of modulation. It is the real

part of (6) which corresponds to the actual transmitted
signal. The autocorrelation function Bi(7) of (6) 1s

Bi(r) = 2P[1 + m,2Rmi(7)] exp (juw,r) (7)

where R, () is the autocorrelation funciion of the kth
member of the ith stochastic process. It may be shown [2]
that one-half times the real part of (7) represents the
autocorrelation function of the actual transmitted signal.
Since Ry;,(0)=1 for all 7 and k, the actual total average
power transmitted is given by

P, = 1R(0) = Pl1 + m,?]. &)

The DSB/SC signal may be wrilien mathematically as
[ [ =

Ei(l) = V2Pm(t) exp (jod); kb = (9)

where we have assumed that the kth member of the ith

stochastic signaling class is being transmitted. The auto-
correlation funetion of (9) is given by

Ry(7) =2P Ry (1) exp (jo,r)

1,2
1,2 ...,

(10
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and, since Bn,,(0)=1,
P, = 3R,(0) = P (11)

is the total average power transmitted.
The SSB (type III) signal is a bit more difficult to
generate. In this case we transmit

1=1,2
£4(8) = V2P[1 + mgsi:(f) 1 exp (o) ;& = 1,2, .. ., (12)

where the process s;:(f) is generated in the following man-
ner.

Assume that the kth member of the ¢th process is being
transmitted. The time series m,;(t) is passed through a
Hilbert transforming (‘") filter whose output has been
phase-shifted by 90° and represented by the waveform
mi(t). This process is added to the original process to
produce the signal

8x:(t) = mu(t) + gt (13)

i

where (“"?)signifies the Hilbert transforming operation
(see Fig. 2). The spectral properties of s.:(f) may be
shown [2] to be related to those of m,.(t) through

48:w; k); 0 >0
Sei(@) = <28 (w; k); w = 0. (14)
0 ;0 <0

It may also be shown that [2]
R, (1) = R;(7) (15)
and
Elm(r)i(s)] = Elm(r)]E[m(s)) (16)

which says the process m(7) and its Hilbert transform are
uncorrelated. If we further assume that both signaling
processes have zero mean, it follows that the autocorrela-
tion function of (12) is

Ri(7) = 2P[1 4+ m R, (1) ] exp (Jwer) 17

where use has been made of (12) and (16). Thus, for the
SSB signal the total average transmitted power is

P, = 1R;(0) = [1 4+ 2m,?]P. (18)
For type IV modulation, i.e., SSB/SC, we transmit
Ea(t) = V2Psyi(t) exp (jwt) (19)

where s,,() is given by (13). The autocorrelation of (19) is
easily shown to be

Ri(r) = 2PRy;(7) exp (Jw.T) (20)
and the average total transmitted power is given by
P, = {R(0) = 2P. (21)

The real part of (6), (9), (12), and (19) represents the
physical signal emitted by the transmitter when the aver-
age power in the carrier is the same for all four types of

modulation techniques. If, on the other hand, we have
available for transmission only P, watts, regardless of the
type of modulation technique, we may write from (8),
(11), (18), and (21) the set of “normalized” transmitted
signals {£,(t)} using complex carriers as

2P, .
) =y - e U mana ()] exp (jod); DSB

£a(l) = V2Pm(t) exp (Jwd); DSB/SC ©22)

2P, .
&) = \/IT—W [1 + mesei(t) ] exp (juw t) ; SSB

Ei()) = VPsi(t) exp (ud); SSB/SC

where we have assumed we are transmitting the kth
member of the ¢th message class, 1=1, 2; k=1,2, ...,o.
This is sufficient to characterize the transmitted wave-
forms. Practical methods for impressing the signals mg,
onto the carrier, i.e., generation of the real parts of (22),
are given in [3] and [4] while methods of signal reception
are given in Coatas [5] and Norgaard [6].

CHARACTERIZATION OF THE ADDITIVE NOISE
We presume that the complex additive noise »(¢) is given
by
p(t) = m(l) exp (Jod) (23)
where
m(t) = n(0) + jat)

and n(f) and its Hilbert transform n(t) are white Gaussian
noise processes possessing single-sided spectral densities
of Ny W/eps. The physical additive noise process is the
“real part”’ of the complex Gaussian process »(), i.e.,

no() = n(t) cos wl — nt) sin wd. (24)
The autocorrelation function of ny(f) is easily shown to be
Rno(T) = (N()/?)&(T)

In carrying out the frequency-translation operation at
the receiver, one must use the real part of the received
signals ¥;(f). If we multiply the noise process ny(t) by the
noisy stored carrier reference r(f), we obtain

no(@)r() = (1/V2) [n(t) cos ® + A(t) sin &} +
double frequency terms

where we have assumed that the stored reference is given
by

r{t) = V2 cos (wt + B) (25)

and ® is a random variable. For example, & may well
represent the phase error of a phased-locked loop which is
tracking the sinusoid sin w/t in the presence of additive
white Gaussian noise. Several probability distributions
have been derived in [7] and [8], which govern the statis-
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tics of this phase error. Neglecting the double-frequency
terms (since the Wiener filter will not respond to them),
we may represent the noise at the multiplier output by

n'(t) = (1/V2)[n(t) cos ® + n(t) sin &]. (26)

It remains to determine the statistics of n’(f). The auto-
correlation function of the noise process n’(f) may be
shown to be

Rt — s) = E[n'(On'(s)]

(No/2)8(t — ) 27)

by using (26) and the facts that » and # are uncorrelated
and have zero mean. Equation (27) says that the noise
present at the multiplier output is white and Gaussian
and has a single-sided spectral density of Ny W/(¢/s).
For reasons that will become obvious later, we compute
the multiplier outputs #;(¢) for all four types of modula-
tion. To accomplish frequency translation in the physical
sense we must use the physical waveforms received, i.e.,
Re{yyi(t)}, where Re denotes “real part.” For the DSB
systems we have, using (22), (24), (26), and a little labor,?

mea(l) = me VP,/1 + memyi(t) +n'(2); DSB
() = VPm(l) + n'(t); DSB/SC (28)

and we have neglected the double-frequency and dc terms.
In the SSB cases we have for the multiplier outputs,
neglecting the double-frequency and dc¢ terms,

mi(l) = my i——%;;a2[1nm(t) + ﬁ@k,(t)] + n"(t)/V2;88B
<% 1, - O sap/ee
mi(t) = \/ 5 [maa() + ()] + V3 ; SSB/SC (29)

where n"(t) =n(t) + #(2). The input to the Wiener filter for
the SSB systems is z;;(t) =n:,(£) — %::(t) or

z(t) = \/Q['ma\/ﬂ-’t/l + 2mgtm(t) + n(l)];SSB (30)
z) = VILVPmu(t) + n(t)]; SSB/SC

where n(t) is white Gaussian noise of single-sided spectral
density No W/(c/s). Equations (28) and (30) represent,
respectively, the inputs (signal plus noise) to the Wiener
filters of IMigs. 1 and 2. Note that, for the DSB/SC and
SSB/SC systems the signals to be filtered are essentially
the same since the square root of two in (30) may be
neglected because it effects both the signal and noise. The
spectral densities of the input process for the four types
of modulation may be written from (1), (3), (28), and (30).
Neglecting the square root of two in (30) they are

! At this point we have assumed perfect coherence at the receiver.
The noisy phase reference case will be discussed later. In the SSB
systems we have assumed that 7(t) = Re[+v/2(1 + j1) exp (jw.l)].
Since M and m have equivalent spectral densities, this serves to
illustrate how either m or m may be recovered at the receiver and
filtered with the same Wiener filter. If m is desired, one must form
n + 7 instead of the difference.

IEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGY

June

Silw; k) =
S;)_i(w; ]C) =

aS:(w; k); DSB
88 {w; k); DSB/SC
Ssi{w; k) = 88,(w; k); SSB
Sslw; k) = 8.8:(w; k); SSB/SC
for ¢ = 1, 2, and all k. The §, factors are defined as
8 = m22(1 + m,2) P, = ¢,P; & = g.P: = P,
8 = 2m (1 + 2m,H) P, = g.P, = P,

@31

Il

Il

gsP; 85 = (32)

while the average input signal power is

1 = .
pP; = Vﬁf Sji(w; k)dw; 7 =1,2,3, 4
2 J %
which becomes, by using (31) and (32),
Py = m2(1 + mt) Py Py, = P,

P; = 2m2(1 + 2m,2) Py, Py = P, (33)

THE WIENER ERROR FOR THE Two CLASSES OF
SIGNALING SPECTRUMS

The instantaneous value of the Wiener error may be
written assuming the kth member of the <th stochastic
class is being transmitted using the jth modulation tech-
nique as (see Figs. 1 and 2)

() = yult) — Vomu(D);i=1,2,3,4

where the §,’s are defined in (32). Since the modulating
signal and the noise vary randomly with time, it is natural
to characterize the “output noise’” by its mean square
intensity

(fl{z‘)2 = [yki(t) - \/5]7”“@)]2-

The Wiener filter (types I and II), which minimizes the
mean-square error for all members of the two classes of
stochastic processes, is the filter that we use at the receiver
for smoothing the observed data 5,;(t) and x,,(¢). The filter
functions (impulse responses) are determined from the
spectral densities of the signal and noise; however, we are
not interested here in the frequency responses of the indi-
vidual filters.

Instead we shall be concerned primarily with determin-
ing the filtering action, i.e., computation of the Wiener
error (ef;)?=a,:2(k).

For type I filters (nonrealizable) it may be shown that
the mean-square error occurring when one transmits the
kth member of the 7th signal class using the jth modulation
technique is given by [1},

NNEEEE T B Sji(w; k)
Oji (k) - o Y .
LT —® 1 + [Zb],(w,k)]/No
and we have assumed the input noise is white and S;(w;
k) are the spectral densitics given by (31).

On the other hand, for type I filters (realizable), the
mean-square error encountered (when the kth member of

dw (34)
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the ¢th signal class is transmitted and the jth modulation
technique employed at the transmitter) may be obtained
from (34) by multiplying the spectral density in the denom-
inator by z and integrating with respect to « over the unit
interval (0, 1). This procedure yields, for white noise with
a single-sided spectral density of Ny W/(c/s),

Ny - 28;i(w; k
a;(k) = 4;:[ In [1 + - ]](\;: )

which is the Wiener error obtained by Yovits and Jackson
[9]. Equations (34) and (35) are remarkable in that the
Wiener error may be evaluated without having to compute
the individual filter functions.

] de  (35)

PERFORMANCE OF TypEs I anDp II FILTERS
Usmvg “MaxiMaLLy FLAT’ SPECTRA

The Wiener error for all four types of modulation and
all members of both signaling classes may be computed
from (31) and (34), i.e.,

012 (0) = lf 8,8:(w; k)

7 21 J_o 1 4 (2/No)8,S:i(w; Ic)
i=1,2
i=1,2,314

k=12, ..., (36)

where the constants 8, and ¢; are defined in (32). Letting
7=1in (36) and substituting (1) into (36), it may be shown
(see Appendix I) that

on?(k) = §;[1 + 28;K1(k)/No]*/20 37)

where K, (k) is given by (2). Defining the SNR p as the
ratio of the mean-squared value of the signal power P;
[see (33)] to the Wiener error, we have?

T 1—(1/2k)
palk; I) = |:1 + 27g,R sinc (2k>] (38)

where R=P,/aN, and the g/s are given by (32). For the
“maximally flat” case we have for k =

pa(=; 1) = 1 + 2mg;R (39)
while for large values of the parameter R, (39) becomes
pii(k; 1) ~ [27g;R sine (x/2k) ]} =/, (40)

The Wiener error for type II filters operating on signal
class one is shown in Appendix IT to be

kN,
K, (k)

The SNR p becomes

0]’12(10) =

{1 + 26,K1(k)/Nol"* — 1}.

* The notation p;i(k; 1) signifies the SNR when the kth member
of the ith stochastic process is being transmitted using the jth
modulation technique, and type I filters are used at the receiver.
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wg,; R sine (x/2k)

pul; 1) = {[1 + 2wg;R sine (7r/2k)]”2" — 1_} (1)
which for large R is asymptotic to
pall; 11) ~ k{ [2vrg:gj§ns(3n:r/(;rk{)2]]f/)2k —1} (42)
Of special interest is the case where £ = «. It may be
shown that
pie; II) = 27g;R/In [14+2nrg,R] (43)

which for large R is asymptotic to
pn(ec; II) ~ 27g,R/In (27g;R). (44)

Comparison of (40) with (42) shows that, for large B and
small k, type I filters have an SNR of approximately 2 k
times the SNR of type II filters. As k approaches infinity,
(39) and (44) show that the performance of type II filtering
becomes inferior to type I filtering by a factor of In
(27g,R). For k=1 and large R, type I filters outperform
type 11 filters by a factor approximately 3 dB.

PerrorMANCE oF TYPES I anD II FruTers Using
“ ASYMPTOTICALLY GAUSSIAN"’ SPECTRA

Equation (3) may be substituted into (31) yielding the
spectra for the four types of modulation. This result, when
used in (34) and (35), gives the required Wiener error.
Because of the lengthy details and integration procedure
required for general k, we evaluate the SNR p for the
special case k= =».

For type 11 filtering the Wiener error for the jth modula-
tion technique is given by

aNo

opi(®) = In [1 + 4V 7g,;R exp (—x2)]d:1:

—

and the SNR p becomes

2rd,
pp(; ™) = — mg.R . (45)
f In[1 4+ 4Vxg,R exp (—x?)dz |
0
For type I filtering the Wiener error for the jth type of
modulation is easily shown to be

o) = __f ZVWgJPt exp( z?)
? —w 1+ 4V7g,R exp (—2?)

and the SNR becomes

d,

pp(o; 1) =

V)2 (46)
® exp (—x?)dx
J:) 1 + 4¢,V7R exp (—z?)

Equations (45) and (46) may be integrated by expanding
the integrand into an infinite series and integrating term
by term. Difficulty arises, however, when 4g,4/zR > 1.
A more tractable procedure to use is to integrate (45) and
(46) numerically on a general purpose computer.
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————— TYPE I FILTERING
TYPE I FILTERING —

9= m‘,2 (Iwn,,z)-li bse
'S |- AM-DSB/SC
g3=2mZ(1+2m2)':  ssB
I/ b $5B8/SC . ///j

12 8 4 0 4 L] 2 16 20
g,R.db >
Fig. 3. System performance characterisiics.

CALCULATED PERFORMANCE AND COMPARISON

Plotted in Figs. 3 and 4 is the SNR p vs. the basic
paramcter g;R, where B = P,/aN,. In particular, Figs.
3 and 4 have been plotied for ¢, = g = 1, i.e., DSB/SC
and SSB/SC systems. Performance for the other two
types of modulation may be obtained from these figures
by rescaling the abscissa by ¢, c.g., if the performance of
the DSB system is required, j = 1and gy = m 2(1 + m,2) !
[see (32)].

The curves show that, regardless of the type of ampli-
tude modulation employed at the transmitier, the larger
k (for either class of stochastic signals), the better is the
SNR p. This is ecasily explained on a physical basis.
For large k, energy in the signaling spectra is suppressed
in the high-frequency regions and accentuated in the low-
frequency regions. Hence, the Wiener filter, for a white
noise input, accepts a smaller amount of the input noise,
and the SNR p is larger. Note that, for large k and R,
type 1 fillers (nounrealizable) yield a value of p highly
superior to type II filters (realizable). In physical situa-
tions where delay in the demodulation procedure is
tolerable, it is quite evident that type I filtering should
be employed with either the SSB/SC or the DSB/SC
system. If bandwidth is a premium, then the SSB/SC
system should be selected over the DSB/SC system. All
systems have the disadvantage of requiring a local copy
of the carrier at the receiver. For 8SB and DSB, a carrier
component is available in the observed data. Such is not
the case for SSB/SC and DSB/SC; consequently, other
means must be employed for obtaining this information
at the receiver. This is obviously a disadvantage of cither
of these systems over the DSB and SSB systems. In terms
of transmission bandwidth, DSB and DSB/SC require
equal amounts while SSB and SSB/SC require only half
as much as the DSB or DSB/SC system.
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Fig. 4. System performance characteristics.

If we view the parameter g;R = ¢,P,/aN, as a measure
of the effectiveness of the jth modulation technique, we
find that DSB/SC and SSB/SC perform equally well.
On this basis, the DSB/SC and SSB/SC systems are
10 logyw [m, 2L + m,%)] better than DSB and 10 logy
[(1 4 2m,5(2m,2) ' dB better than SSB. In terms of
p, for a given k and £, no general conclusions may be
reached; the curves in Figs. 3 and 4 must be consulted.

Perrormance Using A Noisy PHaske REFERENCE

One major difliculty with implementing any of the
amplitude-demodulation systems studied here is that of
providing the receiver with a copy of the transmitied
carrier, i.c., synchronization of the {ransmitter and
recetver local oscillators. One practical means of achieving
carrier synchronization in the past has been to employ a
phase-locked loop at the receiver. Even if one is willing
to build a phasc-locked loop at the receiver, there remains
the question of what component in the received signal
should one try to achicve carrier lock; e.g., in DSB/SC
or SSD/SC, the received spectrum does not contain a
frequency component oscillating at the carrier frequency.
The best one can do (probably) is to transmit a pilot
carrier for use in connection with the phase-locked loop.
Other methods are outlined in [3], [5], and [6]. This,
however, requires additional energy. On the other hand,
for DSB and SSB there exists a carrier component in the
received signal spectrum. In fact, the power in this com-
ponent is a function of the modulation index m, [see (22)].
With a knowledge of this it is not at all clear how one
could most effectively mechanize a phase-locked loop for
synchronization purposes. Consequently, in what follows
we shall assume that a phase-locked loop is used to derive
the reference signal

rt) = V2 cos (wt + ®) “47n
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where ® is the phase error, and the voltage control oscil-
lator (VCO) in the phase-locked loop (PLL) is oscillating
at the carrier frequency. Viterbi [7} and Tikhonov (8]
have shown that the probability distribution p(®) for
the phase error & is given by

p(®) = exp (a cos ) (48)

1
271']0((1)
where Iy(a) is the imaginary Bessel function evaluated
at the SNR existing in the loop. Taking into consideration
a phase error ® rad/s, the factor cos & multiplies the signal
components in (28) and (30). As already shown, the noise
statisties remain unchanged. Hence, the spectral densities
of (31) are multiplied by cos? ® as well as the g;'s of (32)
and the Wiener error; computed for the ideal reference
signal, they become that value of the Wiener error,
conditional on the fact that the phase error is & rad/s,
ie., o;(k) = o;(k|®). The total mean-square error
that results when all members of the phase-error ensemble
are taken into consideration becomes

ri®) = [ p@ il (49)
If one attempts to solve this equation using (48) for
general k, 7, and 7, a formidable integral is immediately
encountered. Special cases, e.g., k = «©, may be worked
out exactly. For general 7, k, and ¢, numerical integration
techniques could be applied to obtain values for py;
(k; T or II), but it appears, at this point, to be hardly
worth the effort.

An alternate procedure that gives some idea as to the
effect of a noisy phase reference is to average over the
phase error before filtering, i.e., define the input signal
component of 5,,(t) [or 2;;(£)] by the following relationship.

2 = [ p@m@dn (50)
Carrying out this integral using (28) and (48) yields for
the jth type of modulation

1
27rI()(Ol)

ns(t) = {f” \/g‘, Pon(t) cos @ exp (« cos $)dd

n f " 0(t) exp (a cos q:)d@}. (1)
Performing the integration gives

— Il a
\/g,-fo%a% Pani(t) + n' @)

= Vi Pmu(t) + n'(0)

"Iki(t) =
(52)
where

Vi = Vg, (e)/To(a)]

and I («) is the first-order Bessel function of imaginary
argument. Thus, for all types of modulation the curves
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of Figs. 3 and 4 still apply; however, the abscissa is now
g}R instead of g;R. If &« = o, corresponding to perfect
coherence, g]'- = g, If & = 0, corresponding to a carrier
whose phase variable is uniformly distributed over an
interval of length 2, g} =0forallj. For0 < a < »
we find that g} < g;, e.g., if @ = 10, corresponding to an
SNR in the loop of 10 dB, we have g]'- = 0.90g,. If « = 1,
corresponding to an SNR in the loop of zero dB, we find
q] = 0.20g;. Thus we see that a good (non-noisy) replica
of the carrier is required at the receiver in order that the
demodulation procedure be performed efficiently.

CONCLUSIONS

In this paper we have analyzed four types of amplitude
modulation-demodulation systems. The information-bear-
ing signal used to modulate the {ransmitler is generated
from one of two classes of stochastic processes; the
“maximally flat”” and the “asympotically Gaussian”
processes. We have shown that system performance
depends on the {ype of Wiener filter (realizable or non-
realizable) used to smooth the noisy data and the modulat-
ing spectrum. In particular, for & = 1 and large E, the
nonrealizable filter performs approximately 3 dB better
than the realizable filter. For large & and R the non-
realizable filter performs approximately 10 logyo [In 27g;R]
dB better than the realizable filter.

Tt is shown that system performance is highly dependent
on the parameter k of the modulation spectrum. In fact,
it is advisable to shape the modulating spectrum before
transmission by means of a Butterworth filter or a series
of isolated-cascaded RC networks. Shaping of the modula-
tion spectrum by a Butterworth filter proves to be more
effective than that of using a series of isolated-cascaded
RC networks.

Finally, we considered the situation where the receiver
utilizes in the demodulation procedure a noisy replica
of the transmitted carrier. If the carrier replica is derived
at the receiver by means of a phase-locked loop we find
that the Wiener error is least when the carrier replica is
relatively noise free. For example, a SNR of 10 dB in
the tracking loop reduces the effective input SNR at the
demodulator input by 0.4 dB whereas an SNR of
zero dB in the tracking loop reduces the effective input
SNR by 7 dB. Finally, we point out that these results are
compared in [10] with similar results obtained for fre-
quency demodulation using phase-locked frequency dis-
criminators.

AprENDIX I
We wish to derive (38). From (1) and (36) we may write
8,K,(k)dw
. 1 @ 1+ (w/a)?
ity = L [T LA
27 ~ @ 1 + 5]K1(lﬂ,)
1+ (o/a)*

Rearranging and making the change of variable ax =
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yields
Ki(k @
o2(k) = Bja 1(k) [1 + 28,K,(k)/N,]/20—1 f —Izk
o 1+ =z

Performing the integration and simplifying gives the
desired result.

ArpENnDIX II

To derive (41) we make use of Leibnitz’s rule for
integrals which depend on a parameter, say x. Leibnitz’s
rule says that, if the function f(z, w) is continuous and has
continuous derivative Of/0x in a domain of the 2-w plane,
then

d b
de f bf(x’ w)do = f giw (z, w)dw.  (53)

In other words, differentiation and integration may be

interchanged. Using Leibnitz's rule we present two

methods for evaluating integrals involving the logarithmic.
Consider the functions f(z, ) = [1 4+ h(w)]?,

0@ = [0+ h) (54)
and the derivative ¢'(x) = dg/dz, i.e.,
dg(x) d (= . N
a4 fo [+ h(w) Fdo. (35)

Applying Leibnitz’s rule we have

od e o0 ,
¢'(2) —dxj; 1 +h<w>1dw—f0 o 11+ h(w)] de

g (@) = fo T @) FIn (1 + h(w) Jde.

Evaluating ¢’(z) at ¢ = 0 gives

g'(0) = j;m In [1 4+ h(w)]dw (h6)

which is the form of the integral given in (35).

The second method that may be used for evaluating
(35) is to apply Leibnitz’s rule to the following integral, i.e.,

g(x) = ;i f( )m In (1 + oh(ew)ldo

- ﬁ i aax In 1 4 wh(w)]de *7)

where f(r, w) = In [I 4+ rh(w)]. Thus, (6) becomes

N [ hw)de .
g(x) = j; 1+ zh(e) (58)
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and integrating both sides with respect to x over the unit
interval gives

Jy o= [} [5G

- f Tl 1+ ) Mo (59)
0

which is the required form. Thus we evaluate (7) and then
integrate the result over the unit interval (0, 1) with respect
to the parameter z. In either method, h(w) is related to
the message spectral density through

h(w) = IS’”((A’; k).
Substituting for h{w) and S;(w; k) into (7) gives

8,Ku(k)dw
= 1 + (w/a)*
o) = . Y (60)
No[l + (w/a)?]
Carrying out the integration yields
g(x) = 8;(1 + 2a8,K,(k)/No)/2H—1, (61)

The error o;;%(k) is easily related to g(z) through
N, 1
o) = 50 [ g
&7 0
Substituting for g(x) and integrating gives

kN, ) o\ /e }
g + 2mg,R sine| — —1p (62
Kl(lc){[l 2wg;R bmc<2k>j| (62)

and the SNR p is

0’;12(,0) =

pn(k; 11) = gfl_)‘, (63)
I\, 0’]‘12(]\7)
which is the desired result.
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